Setting the “current” person and looping through persons

Although the CHousehold objects Family, Person, and Adult can be treated like simple structures, in fact they are more complicated. Since each household may contain a varying number of families, persons, and adults, the corresponding objects are actually based on iterator classes (which in turn are derived from the MFC template library). Although the programmer does not need to bother him/herself with the details of how these iterators are implemented, there is one detail that must be kept in mind when accessing member variables of these objects. By default, each time a member variable of the Family, Person, or Adult object is accessed, the value returned is for one of several possible families, persons, or adults within the household. Which family, person, or adult this is dependents upon which person (either adult or child) is considered (by the frame) to be the “current” person.

Who the “current” person is depends on which person the last “Get/Set…Person” function call set as the current person. Both the CHousehold object and the CUnit object have such functions. So for example, if the last of these functions called was GetFirstPerson from the CUnit object, and the first person of the current unit was person #3 in the household, then references to the Family object would return values for the family that person #3 belongs to, references to the Person object would return values for person #3, and references to the Adult object would return values for person #3 only if person #3 is an adult.

The Get…Person functions of the CHousehold object can be used by the simulation object to loop through a household. A typical use of these functions is as follows:

pHousehold->GetFirstPerson();

do {

code to process a household member

} while (pHousehold->GetNextPerson());

Similiarly, the Get…Person functions of the CUnit object can be used by the simulation object to loop through a unit. A typical use of these functions is as follows:

pUnit->GetFirstPerson();

do {

code to process a unit member

} while (pUnit->GetNextPerson());

If the simulation needs to set the current person to a particular person, the function SetPerson(PNum) can be called from either the CHousehold or CUnit object. This sets the current person to person number PNum (which is a 0-based index to a person within a household/unit). Warning: The programmer should be aware that SetPerson does not check that person PNum is actually in the current household/unit!

	Get/Set Functions of CHousehold / CUnit

	BOOL GetFirstPerson()
	Sets the current person to the first person in the household/unit.

Note the difference between

pHousehold->GetFirstPerson()

and pUnit->GetFirstPerson().

	BOOL GetNextPerson()
	Sets the current person to the next person in the household/unit; returns FALSE if there is no next person.

Note the difference between

pHousehold->GetNextPerson() and

pUnit->GetNextPerson().

	void SetPerson(int i)
	Set the current person to the person with PersonNum i (0-based).
SetPerson does not check that person PNum is actually a valid person number in the current household/unit!

If a function loops through persons or in some other way changes the person pointer, and it is a part of a larger loop through persons in a unit, save the ID of the original person before the pointer is changed. Once all processing is finished, reset the current person pointer to the original person before the function is exited. . For example:

bool CTANFEligible::AnyIndicationOfReceiptByUnit() {

 //Save ID of current person:

 int CurrentPerson = pUnit->GetPersonNum();

 bool Any = FALSE;

 pUnit->GetFirstPerson();

 do {

 if ((pHousehold->Adult->Afdc > 0) ||

 (pHousehold->Adult->LastPublicAssistanceMonths > 0) ||

 (pHousehold->Adult->OtherPublicAssistance > 0)) {

 Any = TRUE;

 }

 } while (pUnit->GetNextPerson());

 //set current person to the same as when function was called:

 pUnit->SetPerson(CurrentPerson);

 return Any;

}
Looping Efficiencies
It is relatively resource-intensive for the frame to change the person pointer, and therefore such looping should be minimized (see the document “Efficient Looping” for a complete analysis of this issue). If a loop involves both a person loop and a monthly loop, it is more efficient to put the monthly loop inside the person loop. If you need a loop that only needs to read input variables and to read or write result variables, you can replace standard looping with a much more efficient loop. To access input variables for all persons in the current household, e.g., grandparent deeming in TANF assets, you may use the following:

for (int i=0; i < pHousehold->Person.ArraySize; i++) {

 if (pHousehold->Person[i]->IsHouseholder()

&& (pHousehold->Person[i]->Age >= 18)) {

…

 }

}

You can use any other input object in place of Person, or use pExcecutingResultSet->Result in place of Person to read or set result variables.
To loop through all persons in the unit, you need to add a test:

for (int i=0; i < pHousehold->Person.ArraySize; i++) {

 if (UnitNum == UnitArray [i]) {

…

 }

}

Note that these loops do not change the current person, so do not call other simulation functions in such loops.

